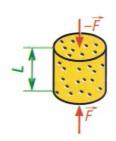



## **Exercice 1**

Une poutre tubulaire (diamètre extérieur 400 mm), épaisseur e en acier (limite à la rupture  $R_r$  = 380 MPa, limite élastique  $R_e$  = 240 MPa), appartenant à la charpente métallique du centre Pompidou à Paris, supporte un effort de traction de 400 kN. Le coefficient de sécurité adopté, par rapport à  $R_e$ , est égal à 6.



Question 1 - Déterminer l'épaisseur e minimale admissible pour la construction.


Question 2 - La longueur de la partie tubulaire de la poutre est de 3,5 m, déterminer son allongement si E = 200 GPa.

## **Exercice 2**

Un bloc de béton est testé en compression :

- diamètre initial 100,000 mm,
- diamètre final 100,007 mm,
- longueur initiale 200,000 mm,
- longueur finale 199,88 mm,
- charge d'essai F = 118 kN.

Question 1 - Déterminer le module de Young E du béton.



## **Exercice 3**

Le tableau ci-dessous récapitule les résultats d'un essai de traction effectué sur une éprouvette en acier à haute teneur en carbone traité thermiquement. F est la charge sur l'éprouvette et  $\Delta L$  son allongement.

| F (kN)        | 0     | 51,8   | 72    | 93,2  | 109    | 141,6 | 149,6 | 161   | 170     |
|---------------|-------|--------|-------|-------|--------|-------|-------|-------|---------|
| ΔL (mm)       | 0     | 0,0255 | 0,035 | 0,046 | 0,0535 | 0,076 | 0,101 | 0,152 | 0,203   |
|               |       |        |       |       |        |       |       |       |         |
| <i>F</i> (kN) | 177,2 | 186,6  | 197,6 | 214,4 | 227    | 235   | 242   | 246,6 | rupture |
| ΔL (mm)       | 0,254 | 0,355  | 0,508 | 0,762 | 1,016  | 1,270 | 1,524 | 1,780 |         |

Le diamètre initial de l'éprouvette est de 17,68 mm, le diamètre ultime de 16,41 mm, la longueur testée de 25 mm et la longueur ultime 26,75 mm.

Question 1 - Tracer le graphe contrainte  $\sigma$  fonction de la déformation  $\epsilon$ .

Question 2 - En déduire Rr, Re, E, A% et Z%.


Avec l'allongement pour cent A% : A%  $= 100.\frac{Lu-L0}{L0}$ 

coefficient de striction Z% : Z% =  $100.\frac{Su-S0}{S0}$ 

## **Exercice 4**

Une barre en fonte, E = 100 GPa, support une charge de compression de 140 kN.

Question 1 - Déterminer le raccourcissement de la longueur.

